

Particle & Radiation Beam

Particle

$$x_e$$
 $e = 2$ rms

Radiation

$$\frac{h}{x_r}, \quad r$$
 Z_r

$$r \cdot x_r = /2$$

$$x = \sqrt{2}$$
 x , etc.
 r r $/4$

A Schematic of Optical Amplifier

Average power 2 W Bandwidth, FWHM 4 x 10¹³ Hz Total gain 44 dB

1 - argon-ion laser

2 - Ti : sapphire crystal

3 - aperture

Optical Properties of Ti: sapphire at 300 k

 $\begin{array}{ll} Fluorescence\ peak \\ Fluorescence\ lifetime \\ Saturation\ intensity \\ Bandwidth,\ FWHM \\ Refractive\ index,\ n \\ Temp.\ coefficient, \frac{dn}{dT} \end{array} \begin{array}{ll} 780\ nm \\ 3.2\ \mu\ s \\ 2.4\ x\ 10^5\ W/cm^2 \\ 10^{14}\ Hz \\ 1.76 \\ 1.3x10^{-5}\ K^{-1} \end{array}$

TeV 33 Luminosity Enhancement via OSC

Beam-beam limited luminosity:

$$L = \frac{-}{r_p} \underbrace{\frac{N_p}{*}}_{(\leq 0.025)}$$

$$=\frac{r_p N_p}{4}$$

Rate of particle loss due toollisions:

$$\stackrel{\bullet}{N} = 2 \quad \text{hadron} L$$
(Two IPs)

$$\dot{N} = \frac{2}{100}$$
 hadron L ~ 1.4 x 10⁶ s⁻¹ @ 10³³cm⁻²s⁻¹

Optical Stochastic Cooling can provide peak luminosity during 30 hours of store time by reducing the transverse emittance, in step with particle loss (thus keeping at its maximum limiting value):

~ 20 mm mrad 8 mm mrad

and by reducing the *(and hence the longitudinal emittance so that

* ~ 35cm. 15cm.

Transverse Samples

Particle

$$\begin{cases} & E \\ & x_e, & e \end{cases}$$

 $x_e \cdot e = 2 < >$ Particle beam is fully resolved in

Particle beam is fully resolved in space and time by light beam

[Coherence Volume of Light < Beam Emittance]

TeV 33 Luminosity Enhancement via OSC (cont'd)

• Finally, with OSC:

Ldt ~
$$125 \text{ pb}^{-1}$$

(compared with 50 pb⁻¹ without OSC)

- If not limited by antiproton accumulation time, colliding beam "runs" longer than 30 hours are also possible, without loss of luminosity.
- If beam-beam effect can possibly be compensated nonlocally by a nonlinear element (electron beam) somewhere else in the ring, further enhancement of luninosity cantake place by allowing larger archieved by reducing arrther via cooling.
- Possibility of transverse cooling of an the Tevatron main ring for an hour following every 30-50 hour allows piccumulation in the collider ring itself, thus easing demands on the Recycler.